We use cookies to help provide you with the best possible online experience. Please read our Privacy Policy for information about which cookies we use and what information we collect on our site. By continuing to use this site, you agree that we may store and access cookies on your device.
One More Step to Finalize Your Registration
An activation link has been sent to your email address.
Please check the email and activate your account now. It might take few minutes to get the email.
If you did not find it, please check your spam box.
Having problem receiving the email? Send again
Still cannot receive? Contact us
Email :PharmaSources@imsinoexpo.com
Whatsapp :+86-13621645194
Main Sales Markets: North America,Western Europe,Eastern Europe,Asia,Africa
Contract Manufacturing: CRO,CMO
Sample Provided: yes
semisynthetic aminoglycoside antibiotic arbekacin
Arbekacin (INN) is a semisynthetic aminoglycosideantibiotic. It is primarily used for the treatment of infections caused by multi-resistant bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Arbekacin was originally synthesized from dibekacin in 1973. It has been registered and marketed in Japan since 1990 under the trade name Habekacin. Arbekacin is no longer covered by patent and generic versions of the drug are also available under such trade names as Decontasin and Blubatosine.
Arbekacin is used for the short term treatment of multi-resistant bacterial infections, such as methicillin-resistant Staphylococcus aureus (MRSA).
Pharmacodynamics
Aminoglycosides, such as Arbekacin, work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA which consequently, leaves the bacterium unable to synthesize proteins vital to its growth. Energy is needed for aminoglycoside uptake into the bacterial cell. Anaerobes have less energy available for this uptake, so aminoglycosides are less active against anaerobes. Aminoglycosides are useful primarily in infections involving aerobic, gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter.
Mechanism of action
Aminoglycosides, such as 'Arbekacin, inhibit protein synthesis in susceptible bacteria by irreversibly binding to bacterial 30S and 16S ribosomal subunits. Specifically Arbekacin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes.