We use cookies to help provide you with the best possible online experience. Please read our Privacy Policy for information about which cookies we use and what information we collect on our site. By continuing to use this site, you agree that we may store and access cookies on your device.
One More Step to Finalize Your Registration
An activation link has been sent to your email address.
Please check the email and activate your account now. It might take few minutes to get the email.
If you did not find it, please check your spam box.
Having problem receiving the email? Send again
Still cannot receive? Contact us
Email :PharmaSources@imsinoexpo.com
Whatsapp :+86-13621645194
Main Sales Markets: North America,Central/South America,Western Europe,Eastern Europe,Australasia,Asia
Sample Provided: no
Payment Terms: L/L
Gas Displacement Pycnometry System
Gas pycnometry is recognized as one of the most reliable techniques for obtaining true, absolute, skeletal, and apparent volume and density. This technique is non-destructive as it uses the gas displacement method to measure volume. Inert gases, such as helium or nitrogen, are used as the displacement medium. Density calculations using the gas displacement method are much more accurate and reproducible than the traditional Archimedes water displacement method.
The AccuPyc II 1345 Series Pycnometers are fast, fully automatic pycnometers that provide high-speed, high-precision volume measurements and true density calculations on a wide variety of powders, solids, and slurries. After analyses are started with a few keystrokes, data are collected, calculations are performed, and results displayed. A minimal amount of operator attention is required.
This technique uses the gas displacement method to measure volume accurately. Inert gases, such as helium or nitrogen, are used as the displacement medium. The sample is sealed in the instrument compartment of known volume,the appropriate inert gas is admitted, and then expanded into another precision internal volume.
The pressures observed upon filling the sample chamber and then discharging it into a second empty chamber allow computation of the sample solid phase volume. Helium molecules rapidly fill pores as small as one angstrom in diameter; only the solid phase of the sample displaces the gas. Dividing this volume into the sample weight gives the gas displacement density.